Skip to main content

Publications

Original Publications

  • Dümig M, Binder J, Gaculenko A, Daul F, Winandy L, Hasenberg M, Gunzer M, Fischer R, Künzler M, Krappmann S (2021) The infectious propagules of Aspergillus fumigatus are coated with antimicrobial peptides. Cell Microbiol (in press, doi: 10.1111/cmi.13301).
  • Ramšak B, Markau J, Pazen T, Dahlmann TA, Krappmann S, Kück U (2021) The master regulator MAT1-1-1 of fungal mating binds to its targets via a conserved motif in the human pathogen Aspergillus fumigatus. G3 (Bethesda) (in press)
  • Bertuzzi M, van Rhijn N, Krappmann S, Bowyer P, Bromley MJ, Bignell EM (2021) On the lineage of Aspergillus fumigatus isolates in common laboratory use. Med Mycol 59: 7-13.
  • Binder J, Shadkchan Y, Osherov N, Krappmann S (2020) The essential thioredoxin reductase of the human pathogenic mould Aspergillus fumigatus is a promising antifungal target. Front Microbiol 11: 1383.
  • Dietschmann A, Schruefer S, Krappmann S, Voehringer D (2020) Th2 cells promote eosinophil-independent pathology in a murine model of allergic bronchopulmonary aspergillosis. Eur J Immunol 50:1044-1056.
  • Amich A, Mokhtari Z, Strobel M, Vialetto E, Kalleda N, Ottmüller K, Brede C, Jordán-Garrote AL, Thusek S, Mattenheimer K, Arslan B, Pinecker J, Thornton CR, Gunzer M, Krappmann S, Einsele H, Heinze KG, Beilhack A (2020) Three-dimensional light sheet fluorescence microscopy of lungs to dissect local host immune-Aspergillus fumigatus interactions.mBio 11: e02752-19.
  • Horch RE, Krappmann S, Dümig M, Schmitz M, Kengelbach-Weigand A, Schubert DW, Kremser T, Bogdan C, Ludolph I (2019) Aspergillus fumigatus spores are not able to penetrate silicone breast implant shells. Ann Plast Surg 85: 306-309.
  • Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé JP, Krappmann S, Fowler SJ, Bignell EM, Amich J (2019) Pseudomonas aeruginosa-derived volatile sulphur compounds promote distal Aspergillus fumigatus growth and a synergistic pathogen-pathogen interaction that increases pathogenicity in co-infection. Front Microbiol 10: 2311.
  • Binder J, Held J, Krappmann S (2019) Impairing fluoride export of Aspergillus fumigatus mitigates its voriconazole resistance. Int J Antimicrob Agents 53: 689-693.
  • Yu Y, Blachowicz A, Will C, Szewczyk E, Glenn S, Gensberger-Reigl S, Nowrousian M, Wang CCC, Krappmann S (2018) Mating-type factor-specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in Aspergillus fumigatus. Mol Microbiol 10: 1045-1065.
  • Voltersen V, Blango MG, Herrmann S, Schmidt F, Heinekamp T, Strassburger M, Krüger T, Bacher P, Lother J, Weiss E, Hünniger K, Liu H, Hortschansky P, Scheffold A, Löffler J, Krappmann S, Nietzsche S, Kurzai O, Einsele H, Kniemeyer O, Filler SG, Reichard U, Brakhage AA (2018) Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9: e01557-18.
  • Willebrand R, Dietschmann A, Nitschke L, Krappmann S, Voehringer D (2018) Murine eosinophil development and allergic lung eosinophilia are largely dependent on the signaling adaptor GRB2. Eur J Immunol 48:1786-1795.
  • Yu Y, Amich J, Will C, Eagle CE, Dyer P, Krappmann S (2017) The novel Aspergillus fumigatusMAT1-2-4 mating-type gene is required for mating and cleistothecia formation. Fungal Genet Biol108: 1-12.
  • Czakai K, Dittrich M, Kaltdorf M, Müller T, Krappmann S, Schedler A, Bonin M, Dühring S, Schuster S, Speth C, Rambach G, Einsele H, Dandekar T, Löffler J (2017) Influence of platelet-rich plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus. Int J Med Microbiol 307: 95-107.
  • Chopra M, Biehl M, Brandl A, Amich J, Vaeth M, Findeis J, Holtappels R, Podlech J, Mottok A, Kraus S, Jordan Garrote AL, Bäuerlein CA, Brede C, Ribechini E, Fick A, Seher A, Polz J, Ottmüller K, Ritz M, Mattenheimer K, Schwinn S, Winter T, Schäfer V, Krappmann S, Einsele H, Mueller TD, Reddehase MJ, Lutz MB, Männel DN, Berberich-Siebelt F, Wajant H, Beilhack A (2016) Exogenous TNFR2 activation protects from acute GvHD via host Treg expansion.J Exp Med 231: 1881-1900.
  • Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl AM, Meir Z, Haas H, Osherov N, Krappmann S, Dandekar T (2016) Systematic identification of anti-fungal drug targets by a metabolic network approach. Front Mol Biosci3: 22.
  • Amich J, Dümig M, O'Keeffe G, Binder J, Doyle S, Beilhack A, Krappmann S (2016) Exploration of sulfur assimilation of Aspergillus fumigatus reveals biosynthesis of sulfur-containing amino acids as a virulence determinant. Infect Immun 84: 917-929.
  • Rolle AM, Hasenberg M, Thornton C, Solouk-Saran D, Männ L, Weski J, Maurer A, Fischer E, Spycher PR, Schibli R, Boschetti F, Stegemann-Koniszewski S, Bruder D, Severin GW, Autenrieth S, Krappmann S, Davies G, Pichler BJ, Gunzer M, Wiehr S (2016) ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci U S A 113: E1026-1033.
  • Sasse A, Hamer S, Amich J, Binder J, Krappmann S (2016) Mutant characterisation and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence 7: 56-62.
  • Wanka F, Cairns T, Boecker S, Berens C, Happel A, Zheng X, Sun J, Krappmann S, Meyer V (2016) Tet-on, or Tet-off, that is the question: Advanced conditional gene expression in Aspergillus. Fungal Genet Biol 89: 72-83.
  • Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH (2015) RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 16: 640.
  • Rambach G, Blum G, Latgé JP, Fontaine T, Heinekamp T, Hagleitner M, Jeckström H, Weigel G, Würtinger P, Pfaller K, Krappmann S, Löffler J, Lass‐Flörl C, Speth C (2015) Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets. J Infect Dis 212: 1140-1149.
  • Rieber N, Singh A, Carevic M, Öz H, Bouzani M, Amich J, Ost M, Ye Z, Ballbach M, Schäfer I, Mezger M, Klimosch SN, Weber ANR, Handgretinger R, Krappmann S, Liese J, Engeholm M, Schüle R, Salih HR, Marodi L, Speckmann C, Grimbacher B, Ruland J, Brown GD, Beilhack A, Loeffler J, Hartl D (2015) Pathogenic fungi regulate T cell immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17: 507-514.
  • Lother J, Breitschopf T, Krappmann S, Morton CO, Bouzani M, Kurzai O, Gunzer M, Hasenberg M, Einsele H, Loeffler J (2014) Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus. Int J Med Microbiol 304: 1160-1168.
  • Amich J, Schafferer L, Haas H, Krappmann S (2013) Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 9: e1003573.
  • Helmschrott C,  Sasse A, Samantaray S, Krappmann S, Wagener J (2013) Upgrading fungal gene expression on demand: improved systems for doxycycline-dependent silencing in Aspergillus fumigatus. Appl Environ Microbiol 79: 1751-1754.
  • Jiménez-Ortigosa C, Aimanianda V, Muszkieta L, Mouyna I, Alsteens D, Pire S, Beau R, Krappmann S, Beauvais A, Dufrêne YF, Roncero C, Latgé JP  (2012) Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob Agents Chemother 56: 6121-6131.
  • Donat S, Hasenberg M, Schäfer T, Ohlsen K, Gunzer M, Einsele H, Löffler J, Beilhack A, Krappmann S (2012) Surface display of Gaussia princeps luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence 3: 50-61
  • Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S (2011) Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 82: 917-935
  • Khanna N, Stuehler C, Conrad B, Lurati S, Krappmann S, Einsele H, Berges C, Topp MS (2011) Generation of a multiple pathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood 118: 1121-1131
  • Stuehler C, Khanna N, Bozza S, Zelante T, Moretti S, Kruhm M, Lurati S, Conrad B, Worschech E, Stefanović S, Krappmann S, Einsele H, Latgé JP, Loeffler J, Romani L, Topp MS (2011) Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood 117: 5881-2891
  • Morton CO, Varga J, Hornbach A, Mezger M, Sennefelder H, Kneitz S, Kurzai O, Krappmann S, Einsele H, Nierman W, Rogers TR, Löffler J (2011) The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro. PLoS One 6: e16016
  • Hartmann T, Dümig M, Jaber BM, Szewczyk E, Olbermann P, Morschhäuser J, Krappmann S (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the β rec/six site-specific recombination system. Appl Environ Microbiol 76: 6313-6317
  • Szewczyk E, Krappmann S (2010) Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecia formation. Eukaryot Cell 9: 774-783
  • Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S (2009) A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 77: 4041-4050
  • Große V, Krappmann S (2008) The asexual pathogen Aspergillus fumigatus expresses functional determinants of Asprgillus nidulans sexual development. Eukaryot Cell 7: 1724-1732
  • Wagener J, Echtenacher B, Rohde M, Kotz, A, Krappmann S, Heesemann J, Ebel F (2008) The putative a-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and virulence. Eukaryot Cell 7: 1661-1673
  • Schmalhorst P, Krappmann S, Vervecken W, Rohde M, Müller M, Braus GH, Contreras R, Braun A, Bakker H, Routier FH (2008) Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryot Cell 7: 1268-1277
  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19: 3254-3262
  • Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506
  • Sasse C, Bignell EM, Hasenberg M, Haynes K, Gunzer M, Braus GH, Krappmann S (2008) Basal levels of the Aspergillus fumigatus transcriptional activator CpcA are sufficient to support pulmonary aspergillosis. Fungal Genet Biol 45: 693-704
  • Fischer C, Valerius O, Rupprecht H, Krappmann S, Braus GH (2008) Post-transcriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae. FEMS Yeast Res 8: 225-236
  • Bayram Ö, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45: 127-38
  • Busch S, Schwier EU, Nahlik K, Bayram Ö, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. PNAS 104: 8089-8094
  • Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH (2006) The Aspergillus nidulans F box protein GrrA links SCF activity to meiosis. Mol Microbiol 61: 76-88
  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5: 212-215
  • Krappmann S, Bayram Ö, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4: 1298-1307
  • Krappmann S, Bignell EM, Reichard U, Rogers T, Haynes K, Braus GH (2004) The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 52: 785-799
  • Valerius O, Brendel C, Wagner C, Krappmann S, Thoma F, Braus GH (2003) Nucleosome position-dependent and -independent activation of HIS7 expression in Saccharomyces cerevisiae by different transcriptional activators. Eukaryot Cell 2: 876-885
  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49: 717-730
  • Krappmann S, Braus GH (2003) Deletion of Aspergillus nidulans aroC using a novel blaster module that combines ET cloning and marker rescue. Mol Genet Genomics 268: 675-683
  • Hoffmann B, Eckert SE, Krappmann S, Braus GH (2001) Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157: 141-147
  • Krappmann S, Lipscomb WN, Braus GH (2000) Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. PNAS 97: 13585-13590
  • Krappmann S, Pries R, Gellissen G, Hiller M, Braus GH (2000) HARO7 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization. J Bacteriol 182: 4188-4197
  • Krappmann S, Helmstaedt K, Gerstberger T, Eckert S, Hoffmann B, Hoppert M, Schnappauf G, Braus GH (1999) The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J Biol Chem 274: 22275-22282
  • Mösch HU, Kübler E, Krappmann S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10: 1325-1335
  • Schnappauf G, Krappmann S, Braus GH (1998) Tyrosine and tryptophan act through the same binding site at the dimer interface of yeast chorismate mutase. J Biol Chem 273: 17012-17017
  • Springer C, Krappmann S, Künzler M, Zmasek C, Braus GH (1997) Regulation of the yeast HIS7 gene by the global transcription factor Abf1p. Mol Gen Genet 256: 136-146

Reviews, Book Chapters etc.

  • Amich J, Krappmann S, Bachhawat AK (2020) Editorial: Sulphur metabolism of fungi - implications for virulence and opportunities for therapy. Front Microbiol 11:583689.
  • Krappmann S (2017) CRISPR-Cas9, the new kid on the block of Aspergillus molecular biology. Med Mycol 55: 16-23.
  • Yu Y,  Hube B, Kämper J, Meyer V, Krappmann S (2017) When green and red mycology meet: impressions from an interdisciplinary forum on virulence mechanisms of phyto- and human-pathogenic fungi. Virulence 8: 1435-1444.
  • Krappmann S (2016) How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 34: 136-146.
  • Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns T, de Vries RP, Haarmann T, Hansen K, Hertz-Fowler C, Krappmann S, Mortensen UH, Peñalva MA, Ram AFJ, Head RM (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy - a white paper. Fungal Biol Biotechnol 3: 6.
  • Krappmann S (2015) Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence. Virulence6: 727-729.
  • Dümig M, Krappmann S (2015) Controlling fungal gene expression using the doxycycline-dependent Tet-ON system in Aspergillus fumigatus.In van den Berg MA & Maruthachalam K (eds): Genetic Transformation Systems in Fungi, Volume 2. Springer, chapter 10, pp. 131-140.
  • Krappmann S (2014) Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Appl Microbiol Biotechnol98: 1971-1982.
  • Hasenberg M, Krappmann S, Gunzer M (2014) Visualizing immune responses in fungal infections: established and novel methods. In Kurzai O (ed): The Mycota, Vol. XII - Human Fungal Pathogens. Springer Berlin Heidelberg,  chapter 8, pp. 141-160.
  • Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G (2013) Platelets as immune cells in infectious diseases. Future Microbiol8: 1431-1451.
  • Krappmann S, Ramage G (2013) A sticky situation: extracellular DNA shapes Aspergillus fumigatus biofilms. Front Microbiol4: 159.
  • Amich J, Krappmann S (2012) Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality. Front Microbiol3: 414.
  • Krappmann S (2011) Genchirurgie in Pilzen – Marker-Recycling im humanpathogenen Pilz Aspergillus fumigatus BIOspektrum 7: 760-761
  • Hartmann T, Sasse, C, Schedler A, Hasenberg M, Gunzer M, Krappmann S (2011) Shaping the fungal adaptome - Stress responses of Aspergillus fumigatus. Int J Med Microbiol 301: 408-416
  • Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M (2011) Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol 301: 436-444
  • Strittmatter AW, Richter DC, Olbermann P, Krappmann S (2011) De novo-Transkriptom- und Expressionsanalyse mit kombinierter NGS. BIOspektrum 4: 434-436
  • Krappmann S (2009) Aspects of primary carbon and nitrogen metabolism. In: Latgé JP & Steinbach W (eds) Aspergillus fumigatus and Aspergillosis. ASM Press, Washington D.C.; ch. 6, pp. 63-74
  • Krappmann S (2008) Pathogenicity determinants and allergens.In: Osmani SA & Goldman GH (eds), THE ASPERGILLI: Genomics, Medical Aspects, Biotechnology, and Research Methods; CRC Press - Taylor and Francis Group, Florida; ch. 22, pp. 377-400
  • Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21: 25-29
  • Braus GH, Sasse C, Krappmann S (2006) Amino acid acquisition, cross-pathway control, and virulence in A. fumigatus. Med Mycol 44 Suppl.: 91-94
  • Krappmann S (2006) Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol 14: 356-364
  • Krappmann S, Braus GH (2005) Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 43 Suppl 1: S31-40
  • Braus GH, Krappmann S, Eckert S (2002) Sexual development in Ascomycetes: Fruit body formation in Aspergillus nidulans. In: Osiewacz HD (ed), Molecular Biology of Fungal Development, Marcel Dekker Inc, New York: 215-244
  • Krappmann S, Braus GH (2002) Amino Acid Biosynthesis. In: Gellisson G (ed), The methylotrophic yeast Hansenula polymorpha: Biology and Applications. Wiley-VCH, Weinheim, Chapter 4: 41-60
  • Helmstaedt K, Krappmann S, Braus GH (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 65: 404-421